PROJECT FINANCED BY TRAFIKVERKET: CAPACITY MODELING AND SHIFT OPTIMIZATION FOR TRAIN DISPATCHERS CAPMO-TRAIN

- 1 UNKÖPINGS

TOMAS LIDÉN, LIU
CHRISTIANE SCHMIDT, LIU
RABII ZAHIR, LIU

Jan Andersson, VTI
Gunilla Biörklund, VTI

TRAIN DISPATCHING

- Monitoring \& controlling train traffic
- Routing trains
- Open/close railway bridges
- Issue forms, truck warrants, truck permits
- Grant permission to pass red signals
- Communicate by radio/phone with train drivers and other personal
- And more...

Source for the image:
http://www.diplomacyandcommerce.rs/serbian-trains-will-be-even-safer-and-faster-thanks-to-russian-technology/

PROBLEM DESCRIPTION: SHIFT SCHEDULING FOR TRAIN DISPATCHERS

- Shift scheduling nowadays: manually performed
- Challenges during scheduling:
- Legal restrictions
- Operational restrictions
- Balanced workload

LEGAL AND OPERATIONAL RESTRICTIONS

LEGAL AND OPERATIONAL RESTRICTIONS

-The min/max:

- length of a shift; number of working hours in a time horizon (weekly); number of working days; number of working weekends; number of consecutive night shifts; number of days off after a series of night shifts
- The minimum unit that a train dispatcher can be assigned. How these units could be combined?
- How many can a dispatcher handle of: number of trains and geographical areas...?
- And more...

WORKLOAD \& SAFETY

- Safety comes always first
- High workload level
- Low workload level
- Balanced workload
- Previous project (FelOP), and its extension (BelOp) run by VTI

OBJECTIVES OF THE PROJECT

The overall goal of this project is to enable Trafikverket to automatically find cost-effective and safe train dispatcher shifts:

Cost-effectiveness: minimize the number of used dispatchers (and other objectives)

Safety: workload within acceptable thresholds
In a later phase: study the effect of stochastically varying events and how to integrate it in the framework

THE OPTIMIZATION MODEL

- We used an adjusted MIP from Hernandez-Romero* et at.:
- Sets:
- D: set of dispatchers i
- S: set of geographic areas j
- P: set of number of periods k
*E. Hernández-Romero, B. Joseffson, A. Lametti, T. Polishchuk, C. Schmidt, Integrating Weather Impact in Air Traffic Controller Shift Scheduling in Remote and Conventional Towers. EURO Journal on Transportation and Logistics 11 (2022)

- Parameters:

- $T L_{j, k}$: task load for each geographic area j in time period k
- TUB: upper bound on the length of despatcher shift in interval units
- TLB: lower bound on the length of despatcher shift in interval units
- $l_{i, j}=1$ if dispatcher i holds endorsement to control geographic area j
- $A_{\max }$: maximum number of areas per despatcher
- TL $L_{\text {max }}$: maximum task load per dispatcher
- $R_{\text {min }}$: minimum number of rest periods between the shifts
- $R_{\max }$: maximum number of rest periods between the shifts
- $p=|P|$ number of periods
- Decision variables (all binaries):
- $q_{i}=1$ if dispatcher i is used during some period
- $v_{i, k}=1$ if dispatcher i starts his shift at period k
- $y_{j, k}=1$ if dispatcher i is at work during period k
- $x_{i, j, k}=1$ if dispatcher i is assigned to area j during period k
- Constraints:
- $\Sigma_{j \text { in }} x_{i, j, k} * T L_{j, k} \leq T L_{\max } \forall i \in D, \forall k \in P$ (max task load per dispatcher \& period)
- $\sum_{j \text { ins }} x_{i, j, k} \leq y_{i, k} * A_{\max } \forall i \in D, \forall k \in P$ (max number of areas per dispatcher)
- $x_{i, j, k} \leq L_{i, j} \quad \forall i \in D, \forall j \in S, \forall k \in P \quad$ (endorsement requirement)
- $v_{i, k} \leq y_{i, k} \forall i \in D, \forall j \in S, \forall k \in P$ (connect the variables)
- $y_{i, k} \geq x_{i, j, k} \quad \forall i \in D, \forall j \in S, \forall k \in P$ (connect the variables)

- Constraints:

- $\sum_{\mu=k+1-T L B}^{k} v_{i, \mu(\bmod p)} \leq y_{i, k} \quad \forall i \in D, \forall k \in P$ (lower bound for shift length)
- $\sum_{\mu=k+1-T U B}^{k} v_{i, \mu(\bmod p)} \geq y_{i, k} \forall i \in D, \forall k \in P$ (upper bound for shift length)
- $\sum_{\mu=k+1}^{k+R_{\max }} v_{i, \mu(\bmod p)} \geq q_{i}-y_{i, k} \quad \forall i \in D, \forall k \in\left\{1 . . p-R_{\max }\right\}$ (max rest between two consecutive shifts)
- $\sum_{\mu=k+1}^{k+R_{\min }} v_{i, \mu(\bmod p)} \leq q_{i}-y_{i, k} \quad \forall i \in D, \forall k \in P$ (min rest between two consecutive shifts)

- Constraints:

- $\sum_{i \text { in } D} x_{i, j, k}=1 \forall j \in S, \forall k \in P: T L_{j, k}>0$ (assign one dispatcher to areaj during period k if j has positive task load)
- $\sum_{i \text { in } D} x_{i, j, k}=0 \forall j \in S, \forall k \in P: T L_{j, k}=0$ (no assignment for area j if there is no positive task load during period k)
- $v_{i, k} \leq q_{i} \forall i \in D, \forall k \in P$ (if dispatcher i starts in some period then $q_{i}=1$)

Extension of the original model

The issue for periods with no task load

Areas A, B and C have positive task load

Areas A has no task load and is substituted by D

- We introduce a new set:
- V: set of 'virtual' geographic areas i', such that i'=i+100 for each element in D.
- We add new variables:
- $z_{i, j, k}$ (binary), equal to 1 if area switching is necessary due to capacity constraints.
- New constraints:
$x_{i, j+100, k}=0 \forall i \in D, \forall j \in S, \forall k \in P$ if $T L_{j, k}>0$ (no virtual area is assigned whenever the task load is positive)
- $\sum_{i} x_{i, j, k}=1 \forall j \in V, \forall k \in P, i f T L_{j-100, k}=0$ (assign the correspondent virtual area whenever the task load becomes null)
- $\sum_{i}\left(x_{i, j, k}+x_{i, j+100, k}\right)=1 \forall j \in S, \forall k \in P$ (an area or its virtual correspondent is assigned to only one dispatcher during each period)
- $x_{i, j,(k+1) \bmod p}+y_{j,(k+1) \bmod p}-1 \leq x_{i, j,(k+1) \bmod p}+z_{i, j,(k+1) \bmod p} \forall i \in D, \forall j \in S, \forall k \in$ P if $T L_{j+(k+1) \text { modp }}>0$ (keep the same assigned area if a dispatcher is still working next period and the area still have a positive task load)
- $x_{i, j+100, k}+y_{j,(k+1) \bmod p}-1 \leq x_{i, j,(k+1) \bmod p}+z_{i, j,(k+1) \bmod p} \forall i \in D, \forall j \in S, \forall k \in$ P, if $T L_{j,(k+1) \bmod p}>0$ (keep the same assigned area (or its virtual) if, after being assigned to a virtual area, a dispatcher Is till at work next period)
- $x_{i, j, k}+y_{j,(k+1) \bmod p}-1 \leq x_{i, j+100,(k+1) \bmod p}+z_{i, j,(k+1) \bmod p} \forall i \in D, \forall j \in S, \forall k \in$ P, if $T L_{j,(k+1) \bmod p}=0$ (if in next period a dispatcher is still at work and its assigned area has no task load then assign the correspondent virtual area)

A possible objective function is to minimize a linear combination of the total number of used dispatchers and the switches:

$$
\text { Minimize } \sum_{i} \sum_{j} \sum_{k} \alpha * q_{i}+\beta * z_{i, j, k} \text { with } \alpha \gg \beta
$$

WHAT TO DO NEXT STEP?

- How to combine the geographical areas?

- Elaborate the data provided by BelOp to determine the workload thresholds

Expected output

An example of one day schedule for eight dispatchers. This example was presented by Josefsson* et al.
*B. Joseffson, T. Polishchuk, V. Polishchuk, C. Schmidt, Scheduling Air Traffic Controllers at the Remote Tower Center, DASC (2017)

THANK YOU FOR LISTENING

